Аннотация:
Let $U_q(\mathfrak{b})$ be the Borel subalgebra of a quantum affine algebra of type $X^{(1)}_n$ ($X=A,B,C,D$). Guided by the ODE/IM correspondence in quantum integrable models, we propose conjectural polynomial relations among the $q$-characters of certain representations of $U_q(\mathfrak{b})$.
\RBibitem{Sun12}
\by Juanjuan Sun
\paper Polynomial relations for $q$-characters via the ODE/IM correspondence
\jour SIGMA
\yr 2012
\vol 8
\papernumber 028
\totalpages 34
\mathnet{http://mi.mathnet.ru/sigma705}
\crossref{https://doi.org/10.3842/SIGMA.2012.028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2942811}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303998500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84882299653}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma705
https://www.mathnet.ru/rus/sigma/v8/p28
Эта публикация цитируется в следующих 14 статьяx:
Ito K. Kondo T. Kuroda K. Shu H., “Ode/Im Correspondence For Affine Lie Algebras: a Numerical Approach”, J. Phys. A-Math. Theor., 54:4 (2021), 044001
Conti R. Masoero D., “Counting Monster Potentials”, J. High Energy Phys., 2021, no. 2, 59
Ito K., Kondo T., Kuroda K., Shu H., “Wkb Periods For Higher Order Ode and Tba Equations”, J. High Energy Phys., 2021, no. 10, 167
Ito K. Shu H., “Tba Equations For the Schrodinger Equation With a Regular Singularity”, J. Phys. A-Math. Theor., 53:33 (2020), 335201
Vicedo B., “On Integrable Field Theories as Dihedral Affine Gaudin Models”, Int. Math. Res. Notices, 2020:15 (2020), 4513–4601
K. Ito, H. Shu, “Massive ODE/IM correspondence and nonlinear integral equations for $A_r^{(1)}$ -type modified affine Toda field equations”, J. Phys. A-Math. Theor., 51:38 (2018), 385401
E. Frenkel, D. Hernandez, “Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers”, Commun. Math. Phys., 362:2 (2018), 361–414
K. Ito, H. Shu, “ODE/IM correspondence for modified $B_2^{(1)}$ affine Toda field equation”, Nucl. Phys. B, 916 (2017), 414–429
D. Masoero, A. Raimondo, D. Valeri, “Bethe ansatz and the spectral theory of affine Lie algebra-valued connections II: The non simply-laced case”, Commun. Math. Phys., 349:3 (2017), 1063–1105
K. Ito, H. Shu, “ODE/IM correspondence and the Argyres–Douglas theory”, J. High Energy Phys., 2017, no. 8, 071
D. Masoero, A. Raimondo, D. Valeri, “Bethe ansatz and the spectral theory of affine Lie algebra-valued connections I: The simply-laced case”, Commun. Math. Phys., 344:3 (2016), 719–750
E. Frenkel, D. Hernandez, “Baxter's relations and spectra of quantum integrable models”, Duke Math. J., 164:12 (2015), 2407–2460
K. Ito, Ch. Locke, “ODE/IM correspondence and Bethe ansatz for affine Toda field equations”, Nucl. Phys. B, 896 (2015), 763–778
K. Ito, Ch. Locke, “ODE/IM correspondence and modified affine Toda field equations”, Nucl. Phys. B, 885 (2014), 600–619