|
Classification of traces and associated determinants on odd-class operators in odd dimensions
Carolina Neira Jiméneza, Marie Françoise Ouedraogob a Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
b Départment de Mathématiques, Université de Ouagadougou, 03 BP 7021, Burkina Faso
Аннотация:
To supplement the already known classification of traces on classical pseudodifferential operators, we present a classification of traces on the algebras of odd-class pseudodifferential operators of non-positive order acting on smooth functions on a closed odd-dimensional manifold. By means of the one to one correspondence between continuous traces on Lie algebras and determinants on the associated regular Lie groups, we give a classification of determinants on the group associated to the algebra of odd-class pseudodifferential operators with fixed non-positive order. At the end we discuss two possible ways to extend the definition of a determinant outside a neighborhood of the identity on the Lie group associated to the algebra of odd-class pseudodifferential operators of order zero.
Ключевые слова:
pseudodifferential operators, odd-class, trace, determinant, logarithm, regular Lie group.
Поступила: 30 ноября 2011 г.; в окончательном варианте 11 апреля 2012 г.; опубликована 21 апреля 2012 г.
Образец цитирования:
Carolina Neira Jiménez, Marie Françoise Ouedraogo, “Classification of traces and associated determinants on odd-class operators in odd dimensions”, SIGMA, 8 (2012), 023, 25 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma700 https://www.mathnet.ru/rus/sigma/v8/p23
|
|