|
Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)
Resolutions of Identity for Some Non-Hermitian Hamiltonians. I. Exceptional Point in Continuous Spectrum
Alexander A. Andrianovab, Andrey V. Sokolova a V. A. Fock Department of Theoretical Physics, Sankt-Petersburg State University, 198504 St. Petersburg, Russia
b ICCUB, Universitat de Barcelona, 08028 Barcelona, Spain
Аннотация:
Resolutions of identity for certain non-Hermitian Hamiltonians constructed from biorthogonal sets of their
eigen- and associated functions are given for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration possess the continuous spectrum and the following peculiarities are
investigated: (1) the case when there is an exceptional point of arbitrary multiplicity situated on a boundary of continuous spectrum; (2) the case when there is an exceptional point situated inside of continuous spectrum. The reductions of the derived resolutions of identity under narrowing of the classes of employed test functions are revealed. It is shown that in the case (1) some of associated functions included into the resolution of identity are normalizable and some of them may be not and in the case (2) the bounded associated
function corresponding to the exceptional point does not belong to the physical state space. Spectral properties of a SUSY partner Hamiltonian for the Hamiltonian with an exceptional point are examined.
Ключевые слова:
non-Hermitian quantum mechanics, supersymmetry, exceptional points, resolution of identity.
Поступила: 6 августа 2011 г.; в окончательном варианте 25 ноября 2011 г.; опубликована 5 декабря 2011 г.
Образец цитирования:
Alexander A. Andrianov, Andrey V. Sokolov, “Resolutions of Identity for Some Non-Hermitian Hamiltonians. I. Exceptional Point in Continuous Spectrum”, SIGMA, 7 (2011), 111, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma669 https://www.mathnet.ru/rus/sigma/v7/p111
|
|