|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
The 2-Transitive Transplantable Isospectral Drums
Jeroen Schillewaerta, Koen Thasb a Department of Mathematics, Free University of Brussels (ULB), CP 216, Boulevard du Triomphe, B-1050 Brussels, Belgium
b Department of Mathematics, Ghent University, Krijgslaan 281, S25, B-9000 Ghent, Belgium
Аннотация:
For Riemannian manifolds there are several examples which are isospectral but not isometric, see e.g. J. Milnor [Proc. Nat. Acad. Sci. USA 51 (1964), 542]; in the present paper, we investigate pairs of domains in $\mathbb R^2$ which are isospectral but not congruent.
All known such counter examples to M. Kac's famous question can be constructed by a certain tiling method (“transplantability”) using special linear operator groups which act $2$-transitively on certain associated modules.
In this paper we prove that if any operator group acts $2$-transitively on the associated module,
no new counter examples can occur.
In fact, the main result is a corollary of a result on Schreier coset graphs of $2$-transitive groups.
Ключевые слова:
isospectrality; drums; Riemannian manifold; doubly transitive group; linear group.
Поступила: 14 декабря 2010 г.; в окончательном варианте 8 августа 2011 г.; опубликована 18 августа 2011 г.
Образец цитирования:
Jeroen Schillewaert, Koen Thas, “The 2-Transitive Transplantable Isospectral Drums”, SIGMA, 7 (2011), 080, 8 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma638 https://www.mathnet.ru/rus/sigma/v7/p80
|
|