|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Singularities of Type-Q ABS Equations
James Atkinson School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia
Аннотация:
The type-Q equations lie on the top level of the hierarchy introduced by Adler, Bobenko and Suris (ABS) in their classification of discrete counterparts of KdV-type integrable partial differential equations. We ask what singularities are possible in the solutions of these equations, and examine the relationship between the singularities and the principal integrability feature of multidimensional consistency. These questions are considered in the global setting and therefore extend previous considerations of singularities which have been local. What emerges are some simple geometric criteria that determine the allowed singularities, and the interesting discovery that generically the presence of singularities leads to a breakdown in the global consistency of such systems despite their local consistency property. This failure to be globally consistent is quantified by introducing a natural notion of monodromy for isolated singularities.
Ключевые слова:
singularities; integrable systems; difference equations; multidimensional consistency.
Поступила: 14 февраля 2011 г.; в окончательном варианте 13 июля 2011 г.; опубликована 20 июля 2011 г.
Образец цитирования:
James Atkinson, “Singularities of Type-Q ABS Equations”, SIGMA, 7 (2011), 073, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma631 https://www.mathnet.ru/rus/sigma/v7/p73
|
Статистика просмотров: |
Страница аннотации: | 247 | PDF полного текста: | 46 | Список литературы: | 50 |
|