|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On Algebraically Integrable Differential Operators on an Elliptic Curve
Pavel Etingofa, Eric Rainsb a Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
b Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
Аннотация:
We study differential operators on an elliptic curve of order higher than $2$ which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order $3$ with one pole, discovering exotic operators on special elliptic curves defined over ${\mathbb Q}$ which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several poles and with symmetries, and (conjecturally) relate them to crystallographic elliptic Calogero–Moser systems (which is a generalization of the results of Airault, McKean, and Moser).
Ключевые слова:
finite gap differential operator; monodromy; elliptic Calogero–Moser system.
Поступила: 25 апреля 2011 г.; в окончательном варианте 30 июня 2011 г.; опубликована 7 июля 2011 г.
Образец цитирования:
Pavel Etingof, Eric Rains, “On Algebraically Integrable Differential Operators on an Elliptic Curve”, SIGMA, 7 (2011), 062, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma620 https://www.mathnet.ru/rus/sigma/v7/p62
|
|