|
Эта публикация цитируется в 29 научных статьях (всего в 29 статьях)
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
Ángel Ballesterosa, Alberto Encisob, Francisco J. Herranza, Orlando Ragniscocd, Danilo Riglionicd a Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
b Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), Consejo Superior de Investigaciones Cientícas, C/ Nicolás Cabrera 14-16, E-28049 Madrid, Spain
c Università degli Studi Roma Tre, Dipartimento di Fisica E. Amaldi
d Dipartimento di Fisica, Università di Roma Tre and Istituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma, Italy
Аннотация:
The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler–Coloumb potentials, in order to obtain maximally superintegrable classical systems on $N$-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler–Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler–Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace–Runge–Lenz $N$-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented.
Ключевые слова:
coupling constant metamorphosis; integrable systems; curvature; harmonic oscillator; Kepler–Coulomb; Fradkin tensor; Laplace–Runge–Lenz vector; Taub-NUT; Darboux surfaces.
Поступила: 18 марта 2011 г.; в окончательном варианте 12 мая 2011 г.; опубликована 14 мая 2011 г.
Образец цитирования:
Ángel Ballesteros, Alberto Enciso, Francisco J. Herranz, Orlando Ragnisco, Danilo Riglioni, “Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform”, SIGMA, 7 (2011), 048, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma606 https://www.mathnet.ru/rus/sigma/v7/p48
|
|