|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
The Fourier Transform on Quantum Euclidean Space
Kevin Coulembier Gent University, Galglaan 2, 9000 Gent, Belgium
Аннотация:
We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of $q$-Hankel transforms using the first and second $q$-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.
Ключевые слова:
quantum Euclidean space; Fourier transform; $q$-Hankel transform; harmonic analysis; $q$-polynomials; harmonic oscillator.
Поступила: 19 ноября 2010 г.; в окончательном варианте 21 апреля 2011 г.; опубликована 11 мая 2011 г.
Образец цитирования:
Kevin Coulembier, “The Fourier Transform on Quantum Euclidean Space”, SIGMA, 7 (2011), 047, 30 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma605 https://www.mathnet.ru/rus/sigma/v7/p47
|
|