|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Essential Parabolic Structures and Their Infinitesimal Automorphisms
Jesse Alt School of Mathematics, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
Аннотация:
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand–Obata theorem proved by C. Frances, this proves a generalization of the “Lichnérowicz conjecture” for conformal Riemannian, strictly pseudo-convex CR, and quaternionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing fields, which characterizes (local) essentiality via the so-called holonomy associated to a singularity of an infinitesimal automorphism.
Ключевые слова:
essential structures; infinitesimal automorphisms; parabolic geometry; Lichnérowicz conjecture.
Поступила: 2 ноября 2010 г.; в окончательном варианте 11 апреля 2011 г.; опубликована 14 апреля 2011 г.
Образец цитирования:
Jesse Alt, “Essential Parabolic Structures and Their Infinitesimal Automorphisms”, SIGMA, 7 (2011), 039, 16 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma597 https://www.mathnet.ru/rus/sigma/v7/p39
|
|