|
Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)
First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator
Claudia Chanua, Luca Degiovannib, Giovanni Rastellib a Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Milano, via Cozzi 53, Italia
b Formerly at Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italia
Аннотация:
We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians $H$ obtained as one-dimensional extensions of natural (geodesic) $n$-dimensional Hamiltonians $L$. The Liouville integrability of $L$ implies the (minimal) superintegrability of $H$. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with $L$ is constant. As examples, the procedure is applied to one-dimensional $L$, including and improving earlier results, and to two and three-dimensional $L$, providing new superintegrable systems.
Ключевые слова:
superintegrable Hamiltonian systems; polynomial first integrals; constant curvature; Hessian tensor.
Поступила: 31 января 2011 г.; в окончательном варианте 3 апреля 2011 г.; опубликована 11 апреля 2011 г.
Образец цитирования:
Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator”, SIGMA, 7 (2011), 038, 12 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma596 https://www.mathnet.ru/rus/sigma/v7/p38
|
|