|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Bäcklund Transformations for the Kirchhoff Top
Orlando Ragniscoab, Federico Zulloab a Dipartimento di Fisica Universitá Roma Tre
b Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00146 Roma, Italy
Аннотация:
We construct Bäcklund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the $sl(2)$ trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discretization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the “iteration time” $n$. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.
Ключевые слова:
Kirchhoff equations; Bäcklund transformations; integrable maps; Lax representation.
Поступила: 20 июля 2010 г.; в окончательном варианте 14 декабря 2010 г.; опубликована 3 января 2011 г.
Образец цитирования:
Orlando Ragnisco, Federico Zullo, “Bäcklund Transformations for the Kirchhoff Top”, SIGMA, 7 (2011), 001, 13 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma559 https://www.mathnet.ru/rus/sigma/v7/p1
|
|