|
Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)
On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials
F. Alberto Grünbauma, Mizan Rahmanb a Department of Mathematics, University of California, Berkeley, CA 94720, USA
b Department of Mathematics and Statistics, Carleton University, Ottawa, Canada, K1S 5B6
Аннотация:
We give a hypergeometric proof involving a family of $2$-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the $9-j$ symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel corresponding to a “poker dice” type probability model. The proof in this paper derives and makes use of the necessary and sufficient conditions of orthogonality in establishing orthogonality as well as indicating their
geometrical significance. We also derive a $5$-term recurrence relation satisfied by these polynomials.
Ключевые слова:
hypergeometric functions; Krawtchouk polynomials in $1$ and $2$ variables; Appell–Kampe–de Feriet functions; integral representations; transition probability kernels; recurrence relations.
Поступила: 25 июля 2010 г.; в окончательном варианте 1 декабря 2010 г.; опубликована 7 декабря 2010 г.
Образец цитирования:
F. Alberto Grünbaum, Mizan Rahman, “On a Family of $2$-Variable Orthogonal Krawtchouk Polynomials”, SIGMA, 6 (2010), 090, 12 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma548 https://www.mathnet.ru/rus/sigma/v6/p90
|
|