|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models
Alberto Alonso Izquierdo, Miguel Ángel González León, Marina de la Torre Mayado University of Salamanca
Аннотация:
The solitary waves of massive $(1+1)$-dimensional nonlinear $\mathbb S^N$-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive $N$-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation
operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem.
Ключевые слова:
solitary waves; nonlinear sigma models.
Поступила: 7 декабря 2009 г.; опубликована 9 февраля 2010 г.
Образец цитирования:
Alberto Alonso Izquierdo, Miguel Ángel González León, Marina de la Torre Mayado, “Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models”, SIGMA, 6 (2010), 017, 22 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma474 https://www.mathnet.ru/rus/sigma/v6/p17
|
|