Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2009, том 5, 009, 76 стр.
DOI: https://doi.org/10.3842/SIGMA.2009.009
(Mi sigma355)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Self-Consistent-Field Method and $\tau$-Functional Method on Group Manifold in Soliton Theory: a Review and New Results

Seiya Nishiyamaa, João da Providênciaa, Constança Providênciaa, Flávio Cordeirob, Takao Komatsuc

a Centro de Física Teórica, Departamento de Física, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
b Mathematical Institute, Oxford OX1 3LB, UK
c 3-29-12 Shioya-cho, Tarumi-ku, Kobe 655-0872, Japan
Список литературы:
Аннотация: The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of curvature unfamiliar in the conventional time-dependent (TD) self-consistent field (SCF) theory. Our basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe a collective coordinate-system. This manner enables us to take a one-form which is linearly composed of a TD SCF Hamiltonian and infinitesimal generators induced by collective variable differentials of a canonical transformation on a group. The integrability condition of the system read the curvature $C= 0$. Our method is constructed manifesting itself the structure of the group under consideration. To go beyond the maximaly-decoupled method, we have aimed to construct an SCF theory, i.e. $\upsilon$ (external parameter)-dependent Hartree–Fock (HF) theory. Toward such an ultimate goal, the $\upsilon$-HF theory has been reconstructed on an affine Kac–Moody algebra along the soliton theory, using infinite-dimensional fermion. An infinite-dimensional fermion operator is introduced through a Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a $\upsilon$-dependent potential with a $\Upsilon$-periodicity. A bilinear equation for the $\upsilon$-HF theory has been transcribed onto the corresponding $\tau$-function using the regular representation for the group and the Schur-polynomials. The $\upsilon$-HF SCF theory on an infinite-dimensional Fock space $F_\infty$ leads to a dynamics on an infinite-dimensional Grassmannian $\mathrm{Gr}_\infty$ and may describe more precisely such a dynamics on the group manifold. A finite-dimensional Grassmannian is identified with a $\mathrm{Gr}_\infty$ which is affiliated with the group manifold obtained by reducting $gl(\infty)$ to $sl(N)$ and $su(N)$. As an illustration we will study an infinite-dimensional matrix model extended from the finite-dimensional $su(2)$ Lipkin–Meshkov–Glick model which is a famous exactly-solvable model.
Ключевые слова: self-consistent field theory; collective theory; soliton theory; affine KM algebra.
Поступила: 5 сентября 2008 г.; в окончательном варианте 10 января 2009 г.; опубликована 22 января 2009 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Seiya Nishiyama, João da Providência, Constança Providência, Flávio Cordeiro, Takao Komatsu, “Self-Consistent-Field Method and $\tau$-Functional Method on Group Manifold in Soliton Theory: a Review and New Results”, SIGMA, 5 (2009), 009, 76 pp.
Цитирование в формате AMSBIB
\RBibitem{NisDa Da 09}
\by Seiya Nishiyama, Jo\~ao da Provid\^encia, Constan{\c c}a Provid\^encia, Fl\'avio Cordeiro, Takao Komatsu
\paper Self-Consistent-Field Method and $\tau$-Functional Method on Group Manifold in Soliton Theory: a~Review and New Results
\jour SIGMA
\yr 2009
\vol 5
\papernumber 009
\totalpages 76
\mathnet{http://mi.mathnet.ru/sigma355}
\crossref{https://doi.org/10.3842/SIGMA.2009.009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2481483}
\zmath{https://zbmath.org/?q=an:05555901}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062466}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma355
  • https://www.mathnet.ru/rus/sigma/v5/p9
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:362
    PDF полного текста:58
    Список литературы:37
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024