|
Эта публикация цитируется в 72 научных статьях (всего в 72 статьях)
Orbit Functions
Anatoliy Klimyka, Jiri Paterab a Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., Kyiv, 03143 Ukraine
b Centre de Recherches Mathématiques, Université de Montréal, C.P.6128-Centre ville, Montréal, H3C3J7, Québec, Canada
Аннотация:
In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space $E_n$ are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter–Dynkin diagram. Properties of such functions will be described. An orbit
function is the contribution to an irreducible character of a compact semisimple Lie group $G$ of rank $n$ from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group) in the entire
Euclidean space $E_n$. Orbit functions are solutions of the corresponding Laplace equation in $E_n$, satisfying the Neumann condition on the boundary of $F$. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.
Ключевые слова:
orbit functions; Coxeter–Dynkin diagram; Weyl group; orbits; products of orbits; orbit function transform; finite orbit function transform; Neumann boundary problem; symmetric polynomials.
Поступила: 4 января 2006 г.; опубликована 19 января 2006 г.
Образец цитирования:
Anatoliy Klimyk, Jiri Patera, “Orbit Functions”, SIGMA, 2 (2006), 006, 60 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma34 https://www.mathnet.ru/rus/sigma/v2/p6
|
|