|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Tridiagonal Symmetries of Models of Nonequilibrium Physics
Boyka Aneva Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee, 1784 Sofia, Bulgaria
Аннотация:
We study the boundary symmetries of models of nonequilibrium physics where the steady state behaviour strongly depends on the boundary rates. Within the matrix product state approach to many-body systems the physics is described in terms of matrices defining a noncommutative space with a quantum group symmetry. Boundary processes lead to a reduction of the bulk symmetry. We argue that the boundary operators of an interacting system with simple exclusion generate a tridiagonal algebra whose irreducible representations are expressed in terms of the Askey–Wilson polynomials. We show that the boundary algebras of the symmetric and the totally asymmetric processes are the proper limits of the partially asymmetric ones. In all three type of
processes the tridiagonal algebra arises as a symmetry of the boundary problem and allows for the exact solvability of the model.
Ключевые слова:
driven many-body systems; nonequilibrium; tridiagonal algebra; Askey–Wilson polynomials.
Поступила: 3 марта 2008 г.; в окончательном варианте 14 июля 2008 г.; опубликована 28 июля 2008 г.
Образец цитирования:
Boyka Aneva, “Tridiagonal Symmetries of Models of Nonequilibrium Physics”, SIGMA, 4 (2008), 056, 16 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma309 https://www.mathnet.ru/rus/sigma/v4/p56
|
|