Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2008, том 4, 051, 9 стр.
DOI: https://doi.org/10.3842/SIGMA.2008.051
(Mi sigma304)
 

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Quantum Painlevé Equations: from Continuous to Discrete

Hajime Nagoyaa, Basil Grammaticosb, Alfred Ramanic

a Graduate School of Mathematical Sciences, The University of Tokyo, Japan
b IMNC, Université Paris VII \& XI, CNRS, UMR 8165, Bât. 104, 91406 Orsay, France
c Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
Список литературы:
Аннотация: We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as the quantum analogues of the discrete Painlevé equations.
Ключевые слова: discrete systems; quantization; Painlevé equations.
Поступила: 5 марта 2008 г.; в окончательном варианте 3 мая 2008 г.; опубликована 9 июня 2008 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 34M55; 37K55; 81S99
Язык публикации: английский
Образец цитирования: Hajime Nagoya, Basil Grammaticos, Alfred Ramani, “Quantum Painlevé Equations: from Continuous to Discrete”, SIGMA, 4 (2008), 051, 9 pp.
Цитирование в формате AMSBIB
\RBibitem{NagGraRam08}
\by Hajime Nagoya, Basil Grammaticos, Alfred Ramani
\paper Quantum Painlev\'e Equations: from Continuous to Discrete
\jour SIGMA
\yr 2008
\vol 4
\papernumber 051
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma304}
\crossref{https://doi.org/10.3842/SIGMA.2008.051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2425641}
\zmath{https://zbmath.org/?q=an:1154.34045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234815}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma304
  • https://www.mathnet.ru/rus/sigma/v4/p51
  • Эта публикация цитируется в следующих 6 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024