|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac
Matrices
Victor M. Red'kov, Andrei A. Bogush, Natalia G. Tokarevskaya B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Аннотация:
Parametrization of $4\times 4$-matrices $G$ of the complex linear group $GL(4,C)$ in terms of four complex 4-vector parameters $(k,m,n,l)$ is investigated. Additional restrictions separating some subgroups of $GL(4,C)$ are given explicitly. In the given parametrization, the problem of inverting any $4\times4$ matrix $G$ is solved. Expression for determinant of any matrix $G$ is found: $\det G=F(k,m,n,l)$. Unitarity conditions $G^+=G^{-1}$ have been formulated in the form of non-linear cubic algebraic equations including complex
conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups $G_1$, $G_2$, $G_3$ – each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consisting of a product of a 3-parametric group isomorphic $SU(2)$ and 1-parametric Abelian group. The Dirac basis of generators $\Lambda_k$, being of Gell-Mann type, substantially differs from the basis $\lambda_i$ used in the literature on $SU(4)$ group, formulas relating them are found – they permit to separate $SU(3)$ subgroup in $SU(4)$. Special way to list 15 Dirac generators of $GL(4,C)$ can be used $\{\Lambda_k\}=\{\alpha_i \oplus\beta_j\oplus(\alpha_i V\beta_j=\mathbf K\oplus\mathbf L\oplus\mathbf M)\}$, which permit to factorize $SU(4)$ transformations according to $S=e^{i\vec{a}\vec{\alpha}}e^{i\vec{b}\vec{\beta}}e^{i{\mathbf k}{\mathbf K}}e^{i{\mathbf l}{\mathbf L}}e^{i{\mathbf m}{\mathbf M}}$, where two first factors commute with each other and are isomorphic to $SU(2)$ group, the three last ones are 3-parametric groups, each of them consisting of three Abelian
commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices $\Lambda_k$ permits to separate twenty 3-parametric subgroups in $SU(4)$ isomorphic to $SU(2)$; those subgroups might be used as bigger elementary blocks in constructing of a general transformation $SU(4)$. It is shown how one can specify the present approach for the pseudounitary group $SU(2,2)$ and $SU(3,1)$.
Ключевые слова:
Dirac matrices; linear group; unitary group; Gell-Mann basis; parametrization.
Поступила: 19 сентября 2007 г.; в окончательном варианте 24 января 2008 г.; опубликована 19 февраля 2008 г.
Образец цитирования:
Victor M. Red'kov, Andrei A. Bogush, Natalia G. Tokarevskaya, “On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac
Matrices”, SIGMA, 4 (2008), 021, 46 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma274 https://www.mathnet.ru/rus/sigma/v4/p21
|
|