|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Global Attraction to Solitary Waves in Models Based on the Klein–Gordon Equation
Alexander I. Komechab, Andrew A. Komechcb a Faculty of Mathematics, University of Vienna, Wien A-1090, Austria
b Institute for Information Transmission Problems, B. Karetny 19, Moscow 101447, Russia
c Mathematics Department, Texas A\&M University, College Station, TX 77843, USA
Аннотация:
We review recent results on global attractors of $\mathbf U(1)$-invariant dispersive Hamiltonian systems.
We study several models based on the Klein–Gordon equation and sketch the proof that in these models,
under certain generic assumptions, the weak global attractor is represented by the set of all solitary waves.
In general, the attractors may also contain multifrequency solitary waves; we give examples of systems which contain such solutions.
Ключевые слова:
global attractors; solitary waves; solitary asymptotics; nonlinear Klein–Gordon equation; dispersive Hamiltonian systems; unitary invariance.
Поступила: 1 ноября 2007 г.; в окончательном варианте 22 января 2008 г.; опубликована 31 января 2008 г.
Образец цитирования:
Alexander I. Komech, Andrew A. Komech, “Global Attraction to Solitary Waves in Models Based on the Klein–Gordon Equation”, SIGMA, 4 (2008), 010, 23 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma263 https://www.mathnet.ru/rus/sigma/v4/p10
|
|