|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Some Progress in Conformal Geometry
Sun-Yung A. Changa, Jie Qingb, Paul Yanga a Department of Mathematics, Princeton University, Princeton, NJ 08540, USA
b Department of Mathematics, University of California, Santa Cruz,
Santa Cruz, CA 95064, USA
Аннотация:
This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be
complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and
diameter bound of the $\sigma _2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Ключевые слова:
Bach flat metrics; bubble tree structure; degeneration of metrics; conformally compact; Einstein; renormalized volume.
Поступила: 30 августа 2007 г.; в окончательном варианте 7 декабря 2007 г.; опубликована 17 декабря 2007 г.
Образец цитирования:
Sun-Yung A. Chang, Jie Qing, Paul Yang, “Some Progress in Conformal Geometry”, SIGMA, 3 (2007), 122, 17 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma248 https://www.mathnet.ru/rus/sigma/v3/p122
|
|