|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Curved Casimir Operators and the BGG Machinery
Andreas Čapab, Vladimír Soucekc a International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Wien, Austria
b Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, A-1090 Wien, Austria
c Mathematical Institute, Charles University, Sokolovská 83, Praha, Czech Republic
Аннотация:
We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.
Ключевые слова:
induced representation; parabolic geometry; invariant differential operator; Casimir operator; tractor bundle; BGG sequence.
Поступила: 24 августа 2007 г.; в окончательном варианте 16 ноября 2007 г.; опубликована 22 ноября 2007 г.
Образец цитирования:
Andreas Čap, Vladimír Soucek, “Curved Casimir Operators and the BGG Machinery”, SIGMA, 3 (2007), 111, 17 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma237 https://www.mathnet.ru/rus/sigma/v3/p111
|
|