Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2007, том 3, 099, 43 стр.
DOI: https://doi.org/10.3842/SIGMA.2007.099
(Mi sigma225)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

From Holonomy of the Ising Model Form Factors to $n$-Fold Integrals and the Theory of Elliptic Curves

Salah Boukraaa, Saoud Hassanib, Jean-Marie Maillardc, Nadjah Zenineb

a LPTHIRM and Département d'Aéronautique, Université de Blida, Algeria
b Centre de Recherche Nucléaire d'Alger, 2 Bd. Frantz Fanon, BP 399, 16000 Alger, Algeria
c LPTMC, Université de Paris 6, Tour 24, 4ème étage, case 121, 4 Place Jussieu, 75252 Paris Cedex 05, France
Список литературы:
Аннотация: We recall the form factors $f^{(j)}_{N,N}$ corresponding to the $\lambda$-extension $C(N,N;\lambda)$ of the two-point diagonal correlation function of the Ising model on the square lattice and their associated linear differential equations which exhibit both a “Russian-doll” nesting, and a decomposition of the linear differential operators as a direct sum of operators (equivalent to symmetric powers of the differential operator of the complete elliptic integral $E$). The scaling limit of these differential operators breaks the direct sum structure but not the “Russian doll” structure, the “scaled” linear differential operators being no longer Fuchsian. We then introduce some multiple integrals of the Ising class expected to have the same singularities as the singularities of the $n$-particle contributions $\chi^{(n)}$ to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equations satisfied by these multiple integrals for $n=1,2,3,4$ and, only modulo a prime, for $n=5$ and $6$, thus providing alarge set of (possible) new singularities of the $\chi^{(n)}$. We get the location of these singularities by solving the Landau conditions. We discuss the mathematical, as well as physical, interpretation of these new singularities. Among the singularities found, we underline the fact that the quadratic polynomial condition $1+3w+4 w^2=0$, that occurs in the linear differential equation of $ \chi^{(3)}$, actually corresponds to the occurrence of complex multiplication for elliptic curves. The interpretation of complex multiplication for elliptic curves as complex fixed points of generators of the exact renormalization group is sketched. The other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting a geometric interpretation in terms of more general (motivic) mathematical structures beyond the theory of elliptic curves. The scaling limit of the (lattice off-critical) structures as a confluent limit of regular singularities is discussed in the conclusion.
Ключевые слова: form factors; sigma form of Painlevé VI; two-point correlation functions of the lattice Ising model; Fuchsian linear differential equations; complete elliptic integrals; elliptic representation of Painlevé VI; scaling limit of the Ising model; susceptibility of the Ising model; singular behaviour; Fuchsian linear differential equations; apparent singularities; Landau singularities.
Поступила: 19 сентября 2007 г.; в окончательном варианте 7 октября 2007 г.; опубликована 15 октября 2007 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Salah Boukraa, Saoud Hassani, Jean-Marie Maillard, Nadjah Zenine, “From Holonomy of the Ising Model Form Factors to $n$-Fold Integrals and the Theory of Elliptic Curves”, SIGMA, 3 (2007), 099, 43 pp.
Цитирование в формате AMSBIB
\RBibitem{BouHasMai07}
\by Salah Boukraa, Saoud Hassani, Jean-Marie Maillard, Nadjah Zenine
\paper From Holonomy of the Ising Model Form Factors to $n$-Fold Integrals and the Theory of Elliptic Curves
\jour SIGMA
\yr 2007
\vol 3
\papernumber 099
\totalpages 43
\mathnet{http://mi.mathnet.ru/sigma225}
\crossref{https://doi.org/10.3842/SIGMA.2007.099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366923}
\zmath{https://zbmath.org/?q=an:1137.34040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200099}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234755}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma225
  • https://www.mathnet.ru/rus/sigma/v3/p99
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024