|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Miscellaneous Applications of Quons
Maurice R. Kiblerabc a Université Lyon 1
b CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
c Université de Lyon, Institut de Physique Nucléaire
Аннотация:
This paper deals with quon algebras or deformed oscillator algebras, for which the deformation parameter is a root of unity. We motivate why such algebras are interesting for fractional supersymmetric quantum mechanics, angular momentum theory and quantum information. More precisely, quon algebras are
used for (i) a realization of a generalized Weyl–Heisenberg algebra from which it is possible to associate a fractional supersymmetric dynamical system, (ii) a polar decomposition of $\mathrm{SU}_2$ and (iii) a construction of mutually unbiased bases in Hilbert spaces of prime dimension. We also briefly discuss
(symmetric informationally complete) positive operator valued measures in the spirit of (iii).
Ключевые слова:
quon algebra; $q$-deformed oscillator algebra; fractional supersymmetric quantum mechanics; polar decompostion of $\mathrm{SU}_2$; mutually unbiased bases; positive operator valued measures.
Поступила: 23 июля 2007 г.; в окончательном варианте 21 сентября 2007 г.; опубликована 24 сентября 2007 г.
Образец цитирования:
Maurice R. Kibler, “Miscellaneous Applications of Quons”, SIGMA, 3 (2007), 092, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma218 https://www.mathnet.ru/rus/sigma/v3/p92
|
|