|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media
Maxim A. Molchan B. I. Stepanov Institute of Physics, 68 Nezalezhnasci Ave., 220072 Minsk, Belarus
Аннотация:
On the basis of the competing cubic-quintic nonlinearity model, stability (instability) of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an “anomalous” subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.
Ключевые слова:
nonlocality; competing nonlinearity; stochasticity.
Поступила: 26 июля 2007 г.; в окончательном варианте 15 августа 2007 г.; опубликована 26 августа 2007 г.
Образец цитирования:
Maxim A. Molchan, “Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media”, SIGMA, 3 (2007), 083, 9 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma209 https://www.mathnet.ru/rus/sigma/v3/p83
|
|