|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Monodromy of a Class of Logarithmic Connections on an Elliptic Curve
Francois-Xavier Machu Mathématiques - bât. M2, Université Lille 1, F-59655 Villeneuve d'Ascq Cedex, France
Аннотация:
The logarithmic connections studied in the paper are direct images of regular connections on line bundles over
genus-$2$ double covers of the elliptic curve. We give an explicit parametrization of all such connections, determine their monodromy, differential Galois group and the underlying rank-$2$ vector bundle. The latter is described in terms of elementary transforms. The question of its (semi)-stability is addressed.
Ключевые слова:
elliptic curve; ramified covering; logarithmic connection; bielliptic curve; genus-2 curve; monodromy; Riemann–Hilbert problem; differential Galois group; elementary transformation; stable bundle; vector bundle.
Поступила: 22 марта 2007 г.; в окончательном варианте 6 августа 2007 г.; опубликована 16 августа 2007 г.
Образец цитирования:
Francois-Xavier Machu, “Monodromy of a Class of Logarithmic Connections on an Elliptic Curve”, SIGMA, 3 (2007), 082, 31 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma208 https://www.mathnet.ru/rus/sigma/v3/p82
|
Статистика просмотров: |
Страница аннотации: | 289 | PDF полного текста: | 53 | Список литературы: | 40 |
|