Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2024, том 20, 077, 55 стр.
DOI: https://doi.org/10.3842/SIGMA.2024.077
(Mi sigma2079)
 

Non-Stationary Difference Equation and Affine Laumon Space II: Quantum Knizhnik–Zamolodchikov Equation

Hidetoshi Awataa, Koji Hasegawab, Hiroaki Kannoac, Ryo Ohkawade, Shamil Shakirovfg, Jun'ichi Shiraishih, Yasuhiko Yamadai

a Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
b Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
c Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan
d Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
e Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, Osaka 558-8585, Japan
f University of Geneva, Switzerland
g Institute for Information Transmission Problems, Moscow, Russia
h Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan
i Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
Список литературы:
Аннотация: We show that Shakirov's non-stationary difference equation, when it is truncated, implies the quantum Knizhnik–Zamolodchikov ($q$-KZ) equation for $U_{\mathsf v}\bigl(A_1^{(1)}\bigr)$ with generic spins. Namely, we can tune mass parameters so that the Hamiltonian acts on the space of finite Laurent polynomials. Then the representation matrix of the Hamiltonian agrees with the $R$-matrix, or the quantum $6j$ symbols. On the other hand, we prove that the $K$ theoretic Nekrasov partition function from the affine Laumon space is identified with the well-studied Jackson integral solution to the $q$-KZ equation. Combining these results, we establish that the affine Laumon partition function gives a solution to Shakirov's equation, which was a conjecture in our previous paper. We also work out the base-fiber duality and four-dimensional limit in relation with the $q$-KZ equation.
Ключевые слова: affine Laumon space, quantum affine algebra, non-stationary difference equation, quantum Knizhnik–Zamolodchikov equation.
Финансовая поддержка Номер гранта
Japan Society for the Promotion of Science 18K03274
23K03087
21K03180
19K03512
19K03530
22H01116
Osaka Central Advanced Mathematical Institute JPMXP0619217849
Research Institute for Mathematical Sciences, an International Joint Usage/Research Center (Kyoto University)
Our work is supported in part by Grants-in-Aid for Scientific Research (Kakenhi): 18K03274 (H.K.), 23K03087 (H.K.), 21K03180 (R.O.), 19K03512 (J.S.), 19K03530 (J.S.) and 22H01116 (Y.Y.). The work of R.O. was partly supported by Osaka Central Advanced Mathematical Institute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849, and the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.
Поступила: 6 ноября 2023 г.; в окончательном варианте 7 августа 2024 г.; опубликована 22 августа 2024 г.
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Hidetoshi Awata, Koji Hasegawa, Hiroaki Kanno, Ryo Ohkawa, Shamil Shakirov, Jun'ichi Shiraishi, Yasuhiko Yamada, “Non-Stationary Difference Equation and Affine Laumon Space II: Quantum Knizhnik–Zamolodchikov Equation”, SIGMA, 20 (2024), 077, 55 pp.
Цитирование в формате AMSBIB
\RBibitem{AwaHasKan24}
\by Hidetoshi~Awata, Koji~Hasegawa, Hiroaki~Kanno, Ryo~Ohkawa, Shamil~Shakirov, Jun'ichi~Shiraishi, Yasuhiko~Yamada
\paper Non-Stationary Difference Equation and Affine Laumon Space II: Quantum Knizhnik--Zamolodchikov Equation
\jour SIGMA
\yr 2024
\vol 20
\papernumber 077
\totalpages 55
\mathnet{http://mi.mathnet.ru/sigma2079}
\crossref{https://doi.org/10.3842/SIGMA.2024.077}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma2079
  • https://www.mathnet.ru/rus/sigma/v20/p77
    Цикл статей
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:22
    PDF полного текста:13
    Список литературы:10
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024