|
Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)
$\mathrm{SU}_2$ Nonstandard Bases: Case of Mutually Unbiased Bases
Olivier Albouyabc, Maurice R. Kiblerabc a Université Lyon 1
b CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
c Université de Lyon, Institut de Physique Nucléaire
Аннотация:
This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of $\mathrm{SU}_2$ corresponding to an irreducible representation of $\mathrm{SU}_2$. The representation theory of $\mathrm{SU}_2$ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme $\{j^2, j_z\}$ by a scheme $\{j^2,v_{ra} \}$, where the two-parameter operator $v_{ra}$ is defined in the universal enveloping algebra of the Lie algebra $\mathrm{su}_2$. The eigenvectors of the commuting set of operators $\{j^2,v_{ra}\}$ are adapted to a tower of chains $\mathrm{SO}_3\supset C_{2j+1}$ ($2j\in\mathbb N^{\ast}$), where
$C_{2j+1}$ is the cyclic group of order $2j+1$. In the case where $2j+1$ is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.
Ключевые слова:
symmetry adapted bases; truncated deformed oscillators; angular momentum; polar decomposition of su2; finite quantum mechanics; cyclic systems; mutually unbiased bases; Gauss sums.
Поступила: 7 апреля 2007 г.; в окончательном варианте 16 июня 2007 г.; опубликована 8 июля 2007 г.
Образец цитирования:
Olivier Albouy, Maurice R. Kibler, “$\mathrm{SU}_2$ Nonstandard Bases: Case of Mutually Unbiased Bases”, SIGMA, 3 (2007), 076, 22 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma202 https://www.mathnet.ru/rus/sigma/v3/p76
|
|