|
On Pre-Novikov Algebras and Derived Zinbiel Variety
Pavel Kolesnikova, Farukh Mashurovb, Bauyrzhan Sartayevcd a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Shenzhen International Center for Mathematics (SICM),
Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
c United Arab Emirates University, Al Ain, United Arab Emirates
d Narxoz University, Almaty, Kazakhstan
Аннотация:
For a non-associative algebra $A$ with a derivation $d$, its derived algebra $A^{(d)}$ is the same space equipped with new operations $a\succ b = d(a)b$, $a\prec b = ad(b)$, $a,b\in A$. Given a variety $\mathrm{Var} $ of algebras, its derived variety is generated by all derived algebras $A^{(d)}$ for all $A$ in $\mathrm{Var}$ and for all derivations $d$ of $A$. The same terminology is applied to binary operads governing varieties of non-associative algebras. For example, the operad of Novikov algebras is the derived one for the operad of (associative) commutative algebras. We state a sufficient condition for every algebra from a derived variety to be embeddable into an appropriate differential algebra of the corresponding variety. We also find that for $\mathrm{Var} = \mathrm{Zinb}$, the variety of Zinbiel algebras, there exist algebras from the derived variety (which coincides with the class of pre-Novikov algebras) that cannot be embedded into a Zinbiel algebra with a derivation.
Ключевые слова:
Novikov algebra, derivation, dendriform algebra, Zinbiel algebra.
Поступила: 31 августа 2023 г.; в окончательном варианте 5 февраля 2024 г.; опубликована 28 февраля 2024 г.
Образец цитирования:
Pavel Kolesnikov, Farukh Mashurov, Bauyrzhan Sartayev, “On Pre-Novikov Algebras and Derived Zinbiel Variety”, SIGMA, 20 (2024), 017, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma2019 https://www.mathnet.ru/rus/sigma/v20/p17
|
Статистика просмотров: |
Страница аннотации: | 47 | PDF полного текста: | 5 | Список литературы: | 14 |
|