|
Para-Bannai–Ito Polynomials
Jonathan Pelletiera, Luc Vinetab, Alexei Zhedanovc a Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal (Québec), H3C 3J7, Canada
b IVADO, Montréal (Québec), H2S 3H1, Canada
c School of Mathematics, Renmin University of China, Beijing 100872, P.R. China
Аннотация:
New bispectral polynomials orthogonal on a Bannai–Ito bi-lattice (uniform quadri-lattice) are obtained from an unconventional truncation of the untruncated Bannai–Ito and complementary Bannai–Ito polynomials. A complete characterization of the resulting para-Bannai–Ito polynomials is provided, including a three term recurrence relation, a Dunkl-difference equation, an explicit expression in terms of hypergeometric series and an orthogonality relation. They are also derived as a $q\to -1$ limit of the $q$-para-Racah polynomials. A connection to the dual $-1$ Hahn polynomials is also established.
Ключевые слова:
para-orthogonal polynomials, Bannai–Ito polynomials, Dunkl operators.
Поступила: 10 июня 2023 г.; в окончательном варианте 28 октября 2023 г.; опубликована 10 ноября 2023 г.
Образец цитирования:
Jonathan Pelletier, Luc Vinet, Alexei Zhedanov, “Para-Bannai–Ito Polynomials”, SIGMA, 19 (2023), 090, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1985 https://www.mathnet.ru/rus/sigma/v19/p90
|
|