|
A Poincaré Formula for Differential Forms and Applications
Nicolas Ginouxa, Georges Habibba, Simon Raulotc a Université de Lorraine, CNRS, IECL, F-57000 Metz, France
b Lebanese University, Faculty of Sciences II, Department of Mathematics,
P.O. Box 90656 Fanar-Matn, Lebanon
c Université de Rouen Normandie, CNRS, Normandie Univ, LMRS UMR 6085, F-76000 Rouen, France
Аннотация:
We prove a new general Poincaré-type inequality for differential forms on compact Riemannian manifolds with nonempty boundary. When the boundary is isometrically immersed in Euclidean space, we derive a new inequality involving mean and scalar curvatures of the boundary only and characterize its limiting case in codimension one. A new Ros-type inequality for differential forms is also derived assuming the existence of a nonzero parallel form on the manifold.
Ключевые слова:
manifolds with boundary, boundary value problems, Hodge Laplace operator, rigidity results.
Поступила: 19 июля 2023 г.; в окончательном варианте 26 октября 2023 г.; опубликована 8 ноября 2023 г.
Образец цитирования:
Nicolas Ginoux, Georges Habib, Simon Raulot, “A Poincaré Formula for Differential Forms and Applications”, SIGMA, 19 (2023), 088, 17 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1983 https://www.mathnet.ru/rus/sigma/v19/p88
|
|