|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers
Zhiyuan Wanga, Chenglang Yangb a School of Mathematics and Statistics, Huazhong University of Science and Technology,
Wuhan, P.R. China
b Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing, P.R. China
Аннотация:
We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\tau_f(\mathbf{t}^+,\mathbf{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\mathbf{t}^-$, we compute the KP-affine coordinates of $\tau_f(\mathbf{t}^+, \mathbf{t}^-)$.
As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov–Witten invariants of $\mathbb{P}^1$ relative to two points.
Ключевые слова:
2d Toda lattice hierarchy, connected $(n,m)$-point functions, boson-fermion correspondence, double Hurwitz numbers.
Поступила: 18 декабря 2022 г.; в окончательном варианте 21 октября 2023 г.; опубликована 4 ноября 2023 г.
Образец цитирования:
Zhiyuan Wang, Chenglang Yang, “Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers”, SIGMA, 19 (2023), 085, 33 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1980 https://www.mathnet.ru/rus/sigma/v19/p85
|
|