|
Rigidity and Non-Rigidity of $\mathbb{H}^n/\mathbb{Z}^{n-2}$ with Scalar Curvature Bounded from Below
Tianze Haoa, Yuhao Huab, Peng Liua, Yuguang Shia a Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences,
Peking University, Beijing, 100871, P.R. China
b School of Mathematical Sciences, Shanghai Jiao Tong University,
Shanghai, 200240, P.R. China
Аннотация:
We show that the hyperbolic manifold $\mathbb{H}^n/\mathbb{Z}^{n-2}$ is not rigid under all compactly supported deformations that preserve the scalar curvature lower bound $-n(n-1)$, and that it is rigid under deformations that are further constrained by certain topological conditions. In addition, we prove two related splitting results.
Ключевые слова:
scalar curvature, rigidity, ALH manifolds, $\mu$-bubbles.
Поступила: 8 апреля 2023 г.; в окончательном варианте 20 октября 2023 г.; опубликована 1 ноября 2023 г.
Образец цитирования:
Tianze Hao, Yuhao Hu, Peng Liu, Yuguang Shi, “Rigidity and Non-Rigidity of $\mathbb{H}^n/\mathbb{Z}^{n-2}$ with Scalar Curvature Bounded from Below”, SIGMA, 19 (2023), 083, 28 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1978 https://www.mathnet.ru/rus/sigma/v19/p83
|
|