|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation
Peter A. Clarksona, Chun-Kong Lawb, Chia-Hua Linb a School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK
b Department of Applied Mathematics, National Sun Yat-sen University,
Kaohsiung, Taiwan 804, Taiwan
Аннотация:
We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii–Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.
Ключевые слова:
Umemura polynomials; third Painlevé equation; recurrence relation.
Поступила: 29 июня 2023 г.; в окончательном варианте 17 октября 2023 г.; опубликована 25 октября 2023 г.
Образец цитирования:
Peter A. Clarkson, Chun-Kong Law, Chia-Hua Lin, “A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation”, SIGMA, 19 (2023), 080, 20 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1975 https://www.mathnet.ru/rus/sigma/v19/p80
|
|