Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2023, том 19, 078, 27 стр.
DOI: https://doi.org/10.3842/SIGMA.2023.078
(Mi sigma1973)
 

Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction

Florio M. Ciagliaa, Jürgen Jostbcd, Lorenz J. Schwachhöfere

a Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
b Center for Scalable Dynamical Systems, Leipzig University, Germany
c Santa Fe Institute for the Sciences of Complexity, New Mexico, USA
d Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
e Department of Mathematics, TU Dortmund University, Dortmund, Germany
Список литературы:
Аннотация: Jordan algebras arise naturally in (quantum) information geometry, and we want to understand their role and their structure within that framework. Inspired by Kirillov's discussion of the symplectic structure on coadjoint orbits, we provide a similar construction in the case of real Jordan algebras. Given a real, finite-dimensional, formally real Jordan algebra $\mathcal{J}$, we exploit the generalized distribution determined by the Jordan product on the dual $\mathcal{J}^{\star}$ to induce a pseudo-Riemannian metric tensor on the leaves of the distribution. In particular, these leaves are the orbits of a Lie group, which is the structure group of $\mathcal{J}$, in clear analogy with what happens for coadjoint orbits. However, this time in contrast with the Lie-algebraic case, we prove that not all points in $\mathcal{J}^{*}$ lie on a leaf of the canonical Jordan distribution. When the leaves are contained in the cone of positive linear functionals on $\mathcal{J}$, the pseudo-Riemannian structure becomes Riemannian and, for appropriate choices of $\mathcal{J}$, it coincides with the Fisher–Rao metric on non-normalized probability distributions on a finite sample space, or with the Bures–Helstrom metric for non-normalized, faithful quantum states of a finite-level quantum system, thus showing a direct link between the mathematics of Jordan algebras and both classical and quantum information geometry.
Ключевые слова: information geometry, Jordan algebras, Lie algebras, Kirillov orbit method, Fisher–Rao metric, Bures–Helstrom metric.
Финансовая поддержка Номер гранта
Madrid Government (Comunidad de Madrid-Spain) C&QIG-BG-CM-UC3M
Deutsche Forschungsgemeinschaft SCHW893/5-1
European Cooperation in Science and Technology
F.M.C. acknowledges that this work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of “Research Funds for Beatriz Galindo Fellowships” (C&QIG-BG-CM-UC3M), and in the context of the V PRICIT (Regional Program of Research and Technological Innovation). He also wants to thank the incredible support of the Max Planck Institute for the Mathematics in the Sciences in Leipzig, where he was formerly employed when this work was initially started and developed. L.S. acknowledges partial support by grant SCHW893/5-1 of the Deutsche Forschungsgemeinschaft, and also expresses his gratitude for the hospitality of the Max Planck Institute for the Mathematics in the Sciences in Leipzig during numerous visits. This publication is based upon work from COST Action CaLISTA CA21109 supported by COST (European Cooperation in Science and Technology, www.cost.eu).
Поступила: 12 апреля 2023 г.; в окончательном варианте 9 октября 2023 г.; опубликована 20 октября 2023 г.
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Florio M. Ciaglia, Jürgen Jost, Lorenz J. Schwachhöfer, “Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction”, SIGMA, 19 (2023), 078, 27 pp.
Цитирование в формате AMSBIB
\RBibitem{CiaJosSch23}
\by Florio~M.~Ciaglia, J\"urgen~Jost, Lorenz~J.~Schwachh\"ofer
\paper Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction
\jour SIGMA
\yr 2023
\vol 19
\papernumber 078
\totalpages 27
\mathnet{http://mi.mathnet.ru/sigma1973}
\crossref{https://doi.org/10.3842/SIGMA.2023.078}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1973
  • https://www.mathnet.ru/rus/sigma/v19/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024