|
Tridendriform Structures
Pierre Catoire Université du Littoral Côte d'Opale, UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France
Аннотация:
Inspired by the work of J-L. Loday and M. Ronco, we build free tridendriform algebras over reduced trees and we show that they have a coproduct satisfying some compatibilities with the tridendriform products. Its graded dual is the opposite bialgebra of TSym introduced by N. Bergeron et al., which is described by the lightening splitting of a tree. In particular, we can split the product in three pieces and the coproduct in two pieces with Hopf compatibilities. We generate its codendriform primitives and count its coassociative primitives thanks to L. Foissy's work.
Ключевые слова:
Hopf algebras, tridendriform, dendriform, Schröder trees.
Поступила: 10 ноября 2022 г.; в окончательном варианте 31 августа 2023 г.; опубликована 15 сентября 2023 г.
Образец цитирования:
Pierre Catoire, “Tridendriform Structures”, SIGMA, 19 (2023), 066, 36 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1961 https://www.mathnet.ru/rus/sigma/v19/p66
|
|