Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2023, том 19, 060, 10 стр.
DOI: https://doi.org/10.3842/SIGMA.2023.060
(Mi sigma1955)
 

On the Convex Pfaff–Darboux Theorem of Ekeland and Nirenberg

Robert L. Bryant

Department of Mathematics, Duke University, PO Box 90320, Durham, NC 27708-0320, USA
Список литературы:
Аннотация: The classical Pfaff–Darboux theorem, which provides local ‘normal forms’ for $1$-forms on manifolds, has applications in the theory of certain economic models [Chiappori P.-A., Ekeland I., Found. Trends Microecon. 5 (2009), 1–151]. However, the normal forms needed in these models often come with an additional requirement of some type of convexity, which is not provided by the classical proofs of the Pfaff–Darboux theorem. (The appropriate notion of ‘convexity’ is a feature of the economic model. In the simplest case, when the economic model is formulated in a domain in $\mathbb{R}^n$, convexity has its usual meaning.) In [Methods Appl. Anal. 9 (2002), 329–344], Ekeland and Nirenberg were able to characterize necessary and sufficient conditions for a given $1$-form $\omega$ to admit a convex local normal form (and to show that some earlier attempts [Chiappori P.-A., Ekeland I., Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 25 (1997), 287–297] and [Zakalyukin V.M., \textit{C. R. Acad. Sci. Paris Sér. {I} Math.} 327 (1998), 633–638] at this characterization had been unsuccessful). In this article, after providing some necessary background, I prove a strengthened and generalized convex Pfaff–Darboux theorem, one that covers the case of a Legendrian foliation in which the notion of convexity is defined in terms of a torsion-free affine connection on the underlying manifold. (The main result of Ekeland and Nirenberg concerns the case in which the affine connection is flat.)
Ключевые слова: Pfaff–Darboux theorem, convexity, utility theory.
Финансовая поддержка Номер гранта
National Science Foundation DMS-9870164
DMS-1359583
Thanks to Duke University for its support via a research grant and to the National Science Foundation for its support via DMS-9870164 (during which most of the research for this article was done) and DMS-1359583 (during which this article was written).
Поступила: 20 июля 2023 г.; в окончательном варианте 20 августа 2023 г.; опубликована 23 августа 2023 г.
Тип публикации: Статья
MSC: 58A15, 91B16
Язык публикации: английский
Образец цитирования: Robert L. Bryant, “On the Convex Pfaff–Darboux Theorem of Ekeland and Nirenberg”, SIGMA, 19 (2023), 060, 10 pp.
Цитирование в формате AMSBIB
\RBibitem{Bry23}
\by Robert~L.~Bryant
\paper On the Convex Pfaff--Darboux Theorem of Ekeland and Nirenberg
\jour SIGMA
\yr 2023
\vol 19
\papernumber 060
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma1955}
\crossref{https://doi.org/10.3842/SIGMA.2023.060}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1955
  • https://www.mathnet.ru/rus/sigma/v19/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025