|
Эта публикация цитируется в 58 научных статьях (всего в 58 статьях)
Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schrödinger Equation in Two Dimensions
Christiane Quesne Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
Аннотация:
An exactly solvable position-dependent mass Schrödinger equation in two dimensions, depicting a particle moving in a semi-infinite layer, is re-examined in the light of recent theories describing superintegrable two-dimensional systems with integrals of motion that are quadratic functions of the momenta. To get the energy spectrum a quadratic algebra approach is used together with a realization in terms of deformed parafermionic oscillator operators. In this process, the importance of supplementing algebraic considerations with a proper treatment of boundary conditions for selecting physical wavefunctions is stressed. Some new results for matrix elements are derived. This example emphasizes the interest of a quadratic algebra approach to position-dependent mass Schrödinger equations.
Ключевые слова:
Schrödinger equation; position-dependent mass; quadratic algebra.
Поступила: 30 марта 2007 г.; в окончательном варианте 8 мая 2007 г.; опубликована 17 мая 2007 г.
Образец цитирования:
Christiane Quesne, “Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schrödinger Equation in Two Dimensions”, SIGMA, 3 (2007), 067, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma193 https://www.mathnet.ru/rus/sigma/v3/p67
|
Статистика просмотров: |
Страница аннотации: | 455 | PDF полного текста: | 119 | Список литературы: | 64 |
|