|
Total Mean Curvature and First Dirac Eigenvalue
Simon Raulot Laboratoire de Mathématiques R. Salem, UMR 6085 CNRS-Université de Rouen, Avenue de l'Université, BP.12, Technopôle du Madrillet, 76801 Saint-Étienne-du-Rouvray, France
Аннотация:
In this note, we prove an optimal upper bound for the first Dirac eigenvalue of some hypersurfaces in the Euclidean space by combining a positive mass theorem and the construction of quasi-spherical metrics. As a direct consequence of this estimate, we obtain an asymptotic expansion for the first eigenvalue of the Dirac operator on large spheres in three-dimensional asymptotically flat manifolds. We also study this expansion for small geodesic spheres in a three-dimensional Riemannian manifold. We finally discuss how this method can be adapted to yield similar results in the hyperbolic space.
Ключевые слова:
Dirac operator, total mean curvature, scalar curvature, mass.
Поступила: 25 октября 2022 г.; в окончательном варианте 9 мая 2023 г.; опубликована 25 мая 2023 г.
Образец цитирования:
Simon Raulot, “Total Mean Curvature and First Dirac Eigenvalue”, SIGMA, 19 (2023), 029, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1924 https://www.mathnet.ru/rus/sigma/v19/p29
|
|