Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2023, том 19, 016, 29 стр.
DOI: https://doi.org/10.3842/SIGMA.2023.016
(Mi sigma1911)
 

Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory

Primitivo B. Acosta-Humáneza, Moulay Barkatoub, Raquel Sánchez-Caucec, Jacques-Arthur Weilb

a Instituto de Matemática & Escuela de Matemática, Universidad Autónoma de Santo Domingo, Dominican Republic
b XLim - Université de Limoges & CNRS, Limoges, France
c Department of Artificial Intelligence, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
Список литературы:
Аннотация: Darboux developed an ingenious algebraic mechanism to construct infinite chains of “integrable” second-order differential equations as well as their solutions. After a surprisingly long time, Darboux's results were rediscovered and applied in many frameworks, for instance in quantum mechanics (where they provide useful tools for supersymmetric quantum mechanics), in soliton theory, Lax pairs and many other fields involving hierarchies of equations. In this paper, we propose a method which allows us to generalize the Darboux transformations algorithmically for tensor product constructions on linear differential equations or systems. We obtain explicit Darboux transformations for third-order orthogonal systems ($\mathfrak{so}(3, C_K)$ systems) as well as a framework to extend Darboux transformations to any symmetric power of $\mathrm{SL}(2,\mathbb{C})$-systems. We introduce SUSY toy models for these tensor products, giving as an illustration the analysis of some shape invariant potentials. All results in this paper have been implemented and tested in the computer algebra system Maple.
Ключевые слова: Darboux transformations, differential Galois group, differential Galois theory, Frenet–Serret formulas, orthogonal differential systems, rigid solid problem, Schrödinger equation, shape invariant potentials, supersymmetric quantum mechanics, symmetric power, tensor product.
Финансовая поддержка Номер гранта
FONDOCYT 2022-1D2-90
MESCYT 2022-1D2-091
Autonomous University of Madrid
European Regional Development Fund TIN2016-77206-R
UNED PEJD-2018-POST/TIC-9490
ESF - European Social Fund PEJD-2018-POST/TIC-9490
The first author thanks the hospitality of XLim and suggestions of J.J. Morales-Ruiz during the initial stage of this work. He was supported in the final stage of this paper by the FONDOCYT grants 2022-1D2-90 and 2022-1D2-091 from the Dominican Government (MESCYT). The third author thanks Autonomous University of Madrid for the financial support for a research stay at XLim, where she started to work in this article.
This work was partially supported by the grant TIN2016-77206-R from the Spanish Government, co-financed by the European Regional Development Fund. The third author received a postdoctoral grant (PEJD-2018-POST/TIC-9490) from Universidad Nacional de Educación a Distancia (UNED), co-financed by the Regional Government of Madrid and the Youth Employment Initiative (YEI) of the European Social Fund.
Поступила: 21 июля 2022 г.; в окончательном варианте 20 марта 2023 г.; опубликована 31 марта 2023 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 12H05, 35Q40, 81Q60
Язык публикации: английский
Образец цитирования: Primitivo B. Acosta-Humánez, Moulay Barkatou, Raquel Sánchez-Cauce, Jacques-Arthur Weil, “Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory”, SIGMA, 19 (2023), 016, 29 pp.
Цитирование в формате AMSBIB
\RBibitem{AcoBarSan23}
\by Primitivo~B.~Acosta-Hum\'anez, Moulay~Barkatou, Raquel~S\'anchez-Cauce, Jacques-Arthur~Weil
\paper Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory
\jour SIGMA
\yr 2023
\vol 19
\papernumber 016
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma1911}
\crossref{https://doi.org/10.3842/SIGMA.2023.016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4569637}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1911
  • https://www.mathnet.ru/rus/sigma/v19/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024