|
On the Signature of a Path in an Operator Algebra
Nicolas Gilliersa, Carlo Bellingerib a Institut de Mathématiques de Toulouse, UMR5219,
Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
b Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Аннотация:
We introduce a class of operators associated with the signature of a smooth path $X$ with values in a $C^{\star}$ algebra $\mathcal{A}$. These operators serve as the basis of Taylor expansions of solutions to controlled differential equations of interest in noncommutative probability. They are defined by fully contracting iterated integrals of $X$, seen as tensors, with the product of $\mathcal{A}$. Were it considered that partial contractions should be included, we explain how these operators yield a trajectory on a group of representations of a combinatorial Hopf monoid. To clarify the role of partial contractions, we build an alternative group-valued trajectory whose increments embody full-contractions operators alone. We obtain therefore a notion of signature, which seems more appropriate for noncommutative probability.
Ключевые слова:
signature, noncommutative probability, operads, duoidal categories.
Поступила: 11 января 2022 г.; в окончательном варианте 30 ноября 2022 г.; опубликована 9 декабря 2022 г.
Образец цитирования:
Nicolas Gilliers, Carlo Bellingeri, “On the Signature of a Path in an Operator Algebra”, SIGMA, 18 (2022), 096, 43 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1892 https://www.mathnet.ru/rus/sigma/v18/p96
|
Статистика просмотров: |
Страница аннотации: | 43 | PDF полного текста: | 18 | Список литературы: | 21 |
|