|
Virtual Classes of Representation Varieties of Upper Triangular Matrices via Topological Quantum Field Theories
Márton Hablicsek, Jesse Vogel Mathematical Institute, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
Аннотация:
In this paper, we use a geometric technique developed by González-Prieto, Logares, Muñoz, and Newstead to study the $G$-representation variety of surface groups $\mathfrak{X}_G(\Sigma_g)$ of arbitrary genus for $G$ being the group of upper triangular matrices of fixed rank. Explicitly, we compute the virtual classes in the Grothendieck ring of varieties of the $G$-representation variety and the moduli space of $G$-representations of surface groups for $G$ being the group of complex upper triangular matrices of rank $2$, $3$, and $4$ via constructing a topological quantum field theory. Furthermore, we show that in the case of upper triangular matrices the character map from the moduli space of $G$-representations to the $G$-character variety is not an isomorphism.
Ключевые слова:
representation variety, character variety, topological quantum field theory, Grothendieck ring of varieties.
Поступила: 28 февраля 2022 г.; в окончательном варианте 28 ноября 2022 г.; опубликована 6 декабря 2022 г.
Образец цитирования:
Márton Hablicsek, Jesse Vogel, “Virtual Classes of Representation Varieties of Upper Triangular Matrices via Topological Quantum Field Theories”, SIGMA, 18 (2022), 095, 38 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1891 https://www.mathnet.ru/rus/sigma/v18/p95
|
Статистика просмотров: |
Страница аннотации: | 41 | PDF полного текста: | 12 | Список литературы: | 30 |
|