|
Эта публикация цитируется в 50 научных статьях (всего в 50 статьях)
The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case
Tom H. Koornwinder Korteweg--de Vries Institute, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
Аннотация:
Zhedanov's algebra $AW(3)$ is considered with explicit structure constants such that, in the basic representation, the first generator becomes the second order $q$-difference operator for the Askey–Wilson polynomials. It is proved that this representation is faithful for a certain quotient of $AW(3)$ such that the Casimir operator is equal to a special constant. Some explicit aspects of the double affine Hecke algebra (DAHA) related to symmetric and non-symmetric Askey–Wilson polynomials are presented and proved without requiring knowledge of general DAHA theory. Finally a central extension of this quotient of $AW(3)$ is introduced which can be embedded in the DAHA by means of the faithful basic representations of both algebras.
Ключевые слова:
Zhedanov's algebra $AW(3)$; double affine Hecke algebra in rank one; Askey–Wilson polynomials; non-symmetric Askey–Wilson polynomials.
Поступила: 22 декабря 2006 г.; в окончательном варианте 23 апреля 2007 г.; опубликована 27 апреля 2007 г.
Образец цитирования:
Tom H. Koornwinder, “The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case”, SIGMA, 3 (2007), 063, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma189 https://www.mathnet.ru/rus/sigma/v3/p63
|
Статистика просмотров: |
Страница аннотации: | 257 | PDF полного текста: | 236 | Список литературы: | 54 |
|