|
Three Examples in the Dynamical Systems Theory
Mikhail B. Sevryuk V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semënov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Leninskiĭ Prospect 38, Bld. 2, Moscow 119334, Russia
Аннотация:
We present three explicit curious simple examples in the theory of dynamical systems. The first one is an example of two analytic diffeomorphisms $R$, $S$ of a closed two-dimensional annulus that possess the intersection property but their composition $RS$ does not ($R$ being just the rotation by $\pi/2$). The second example is that of a non-Lagrangian $n$-torus $L_0$ in the cotangent bundle $T^\ast\mathbb{T}^n$ of $\mathbb{T}^n$ ($n\geq 2$) such that $L_0$ intersects neither its images under almost all the rotations of $T^\ast\mathbb{T}^n$ nor the zero section of $T^\ast\mathbb{T}^n$. The third example is that of two one-parameter families of analytic reversible autonomous ordinary differential equations of the form $\dot{x}=f(x,y)$, $\dot{y}=\mu g(x,y)$ in the closed upper half-plane $\{y\geq 0\}$ such that for each family, the corresponding phase portraits for $0<\mu<1$ and for $\mu>1$ are topologically non-equivalent. The first two examples are expounded within the general context of symplectic topology.
Ключевые слова:
intersection property, non-Lagrangian tori, planar vector fields, topological non-equivalence.
Поступила: 10 сентября 2022 г.; в окончательном варианте 18 октября 2022 г.; опубликована 29 октября 2022 г.
Образец цитирования:
Mikhail B. Sevryuk, “Three Examples in the Dynamical Systems Theory”, SIGMA, 18 (2022), 084, 13 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1880 https://www.mathnet.ru/rus/sigma/v18/p84
|
|