|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians
Filipp Uvarov Higher School of Economics, 6 Usacheva Str., Moscow, 119048, Russia
Аннотация:
We study the difference analog of the quotient differential operator from [Tarasov V., Uvarov F., Lett. Math. Phys. 110 (2020), 3375–3400, arXiv: 1907.02117]. Starting with a space of quasi-exponentials $W=\langle \alpha_{i}^{x}p_{ij}(x),\, i=1,\ldots, n,\, j=1,\ldots, n_{i}\rangle$, where $\alpha_{i}\in\mathbb{C}^{*}$ and $p_{ij}(x)$ are polynomials, we consider the formal conjugate $\check{S}^{\dagger}_{W}$ of the quotient difference operator $\check{S}_{W}$ satisfying $\widehat{S} =\check{S}_{W}S_{W}$. Here, $S_{W}$ is a linear difference operator of order $\dim W$ annihilating $W$, and $\widehat{S}$ is a linear difference operator with constant coefficients depending on $\alpha_{i}$ and $\deg p_{ij}(x)$ only. We construct a space of quasi-exponentials of dimension $\mathrm{ord}\, \check{S}^{\dagger}_{W}$, which is annihilated by $\check{S}^{\dagger}_{W}$ and describe its basis and discrete exponents. We also consider a similar construction for differential operators associated with spaces of quasi-polynomials, which are linear combinations of functions of the form $x^{z}q(x)$, where $z\in\mathbb C$ and $q(x)$ is a polynomial. Combining our results with the results on the bispectral duality obtained in [Mukhin E., Tarasov V., Varchenko A., Adv. Math. 218 (2008), 216–265, arXiv: math.QA/0605172], we relate the construction of the quotient difference operator to the $(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality of the trigonometric Gaudin Hamiltonians and trigonometric dynamical Hamiltonians acting on the space of polynomials in $kn$ anticommuting variables.
Ключевые слова:
difference operator, $(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality, trigonometric Gaudin model, Bethe ansatz.
Поступила: 28 февраля 2022 г.; в окончательном варианте 26 сентября 2022 г.; опубликована 25 октября 2022 г.
Образец цитирования:
Filipp Uvarov, “Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians”, SIGMA, 18 (2022), 081, 41 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1877 https://www.mathnet.ru/rus/sigma/v18/p81
|
|