|
Freezing Limits for Beta-Cauchy Ensembles
Michael Voit Fakultät Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
Аннотация:
Bessel processes associated with the root systems $A_{N-1}$ and $B_N$ describe interacting particle systems with $N$ particles on $\mathbb R$; they form dynamic versions of the classical $\beta$-Hermite and Laguerre ensembles. In this paper we study corresponding Cauchy processes constructed via some subordination. This leads to $\beta$-Cauchy ensembles in both cases with explicit distributions. For these distributions we derive central limit theorems for fixed $N$ in the freezing regime, i.e., when the parameters tend to infinity. The results are closely related to corresponding known freezing results for $\beta$-Hermite and Laguerre ensembles and for Bessel processes.
Ключевые слова:
Cauchy processes, Bessel processes, $\beta$-Hermite ensembles, $\beta$-Laguerre ensembles, freezing, zeros of classical orthogonal polynomials, Calogero–Moser–Sutherland particle models.
Поступила: 19 мая 2022 г.; в окончательном варианте 15 сентября 2022 г.; опубликована 28 сентября 2022 г.
Образец цитирования:
Michael Voit, “Freezing Limits for Beta-Cauchy Ensembles”, SIGMA, 18 (2022), 069, 25 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1865 https://www.mathnet.ru/rus/sigma/v18/p69
|
|