|
Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories
Jacob Grossa, Dominic Joycea, Yuuji Tanakab a The Mathematical Institute, Radcliffe Observatory Quarter,
Woodstock Road, Oxford, OX2 6GG, UK
b Department of Mathematics, Faculty of Science, Kyoto University,
Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
Аннотация:
An enumerative invariant theory in algebraic geometry, differential geometry, or representation theory, is the study of invariants which ‘count’ $\tau$-(semi)stable objects $E$ with fixed topological invariants $[\![E]\!]=\alpha$ in some geometric problem, by means of a virtual class $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ in some homology theory for the moduli spaces $\mathcal{M}_\alpha^{{\rm st}}(\tau)\subseteq\mathcal{M}_\alpha^{{\rm ss}}(\tau)$ of $\tau$-(semi)stable objects. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson–Thomas type invariants counting coherent sheaves on Calabi–Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds. We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces $\mathcal{M}$, $\mathcal{M}^{{\rm pl}}$, where the second author (see https://people.maths.ox.ac.uk/~joyce/hall.pdf) gives $H_*(\mathcal{M})$ the structure of a graded vertex algebra, and $H_*\big(\mathcal{M}^{{\rm pl}}\big)$ a graded Lie algebra, closely related to $H_*(\mathcal{M})$. The virtual classes $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ take values in $H_*\big(\mathcal{M}^{{\rm pl}}\big)$. In most such theories, defining $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when $\mathcal{M}_\alpha^{{\rm st}}(\tau)\ne\mathcal{M}_\alpha^{{\rm ss}}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define invariants $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{\mathrm{inv}}$ in homology over $\mathbb{Q}$, with $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{\mathrm{inv}}=[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when $\mathcal{M}_\alpha^{{\rm st}}(\tau)=\mathcal{M}_\alpha^{{\rm ss}}(\tau)$, and that these invariants satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*\big(\mathcal{M}^{{\rm pl}}\big)$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles. Versions of our conjectures in algebraic geometry using Behrend–Fantechi virtual classes are proved in the sequel [ arXiv:2111.04694].
Ключевые слова:
invariant, stability condition, vertex algebra, wall crossing formula, quiver.
Поступила: 22 ноября 2021 г.; в окончательном варианте 6 сентября 2022 г.; опубликована 23 сентября 2022 г.
Образец цитирования:
Jacob Gross, Dominic Joyce, Yuuji Tanaka, “Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories”, SIGMA, 18 (2022), 068, 61 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1864 https://www.mathnet.ru/rus/sigma/v18/p68
|
Статистика просмотров: |
Страница аннотации: | 52 | PDF полного текста: | 28 | Список литературы: | 17 |
|