|
The Gauge Group and Perturbation Semigroup of an Operator System
Rui Dong Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Аннотация:
The perturbation semigroup was first defined in the case of $*$-algebras by Chamseddine, Connes and van Suijlekom. In this paper, we take $\mathcal{E}$ as a concrete operator system with unit. We first give a definition of gauge group $\mathcal{G}(\mathcal{E})$ of $\mathcal{E}$, after that we give the definition of perturbation semigroup of $\mathcal{E}$, and the closed perturbation semigroup of $\mathcal{E}$ with respect to the Haagerup tensor norm. We also show that there is a continuous semigroup homomorphism from the closed perturbation semigroup to the collection of unital completely bounded Hermitian maps over $\mathcal{E}$. Finally we compute the gauge group and perturbation semigroup of the Toeplitz system as an example.
Ключевые слова:
operator algebras, operator systems, functional analysis, noncommutative geometry.
Поступила: 1 декабря 2021 г.; в окончательном варианте 28 июля 2022 г.; опубликована 9 августа 2022 г.
Образец цитирования:
Rui Dong, “The Gauge Group and Perturbation Semigroup of an Operator System”, SIGMA, 18 (2022), 060, 18 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1856 https://www.mathnet.ru/rus/sigma/v18/p60
|
Статистика просмотров: |
Страница аннотации: | 50 | PDF полного текста: | 8 | Список литературы: | 12 |
|