Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2022, том 18, 051, 31 стр.
DOI: https://doi.org/10.3842/SIGMA.2022.051
(Mi sigma1847)
 

Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion

Boris Feiginab, Michio Jimboc, Evgeny Mukhind

a Landau Institute for Theoretical Physics, 1a Akademika Semenova Ave., Chernogolovka, 142432, Russia
b National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
c Department of Mathematics, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
d Department of Mathematics, Indiana University Purdue University Indianapolis, 402 N. Blackford St., LD 270, Indianapolis, IN 46202, USA
Список литературы:
Аннотация: We introduce an algebra $\mathcal{K}_n$ which has a structure of a left comodule over the quantum toroidal algebra of type $A_{n-1}$. Algebra $\mathcal{K}_n$ is a higher rank generalization of $\mathcal{K}_1$, which provides a uniform description of deformed $W$ algebras associated with Lie (super)algebras of types BCD. We show that $\mathcal{K}_n$ possesses a family of commutative subalgebras.
Ключевые слова: quantum toroidal algebras, comodule, integrals of motion.
Финансовая поддержка Номер гранта
Программа фундаментальных исследований НИУ ВШЭ
Japan Society for the Promotion of Science JP19K03549
Simons Foundation 353831
709444
The study has been funded within the framework of the HSE University Basic Research Program. MJ is partially supported by JSPS KAKENHI Grant Number JP19K03549. EM is partially supported by grants from the Simons Foundation #353831 and #709444.
Поступила: 2 марта 2022 г.; в окончательном варианте 27 июня 2022 г.; опубликована 7 июля 2022 г.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Boris Feigin, Michio Jimbo, Evgeny Mukhin, “Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion”, SIGMA, 18 (2022), 051, 31 pp.
Цитирование в формате AMSBIB
\RBibitem{FeiJimMuk22}
\by Boris~Feigin, Michio~Jimbo, Evgeny~Mukhin
\paper Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion
\jour SIGMA
\yr 2022
\vol 18
\papernumber 051
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma1847}
\crossref{https://doi.org/10.3842/SIGMA.2022.051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448840}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1847
  • https://www.mathnet.ru/rus/sigma/v18/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:75
    PDF полного текста:39
    Список литературы:13
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024