|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Macdonald Polynomials and Multivariable Basic Hypergeometric Series
Michael J. Schlosser Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Vienna, Austria
Аннотация:
We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that
the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised ${}_6\phi_5$ summation formula. We derive several new related identities including multivariate extensions of
Jackson's very-well-poised ${}_8\phi_7$ summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.
Ключевые слова:
Macdonald polynomials; Pieri formula; recursion formula; matrix inversion; basic hypergeometric series; ${}_6\phi_5$ summation; Jackson’s ${}_8\phi_7$ summation; $A_{n-1}$ series.
Поступила: 21 ноября 2006 г.; опубликована 30 марта 2007 г.
Образец цитирования:
Michael J. Schlosser, “Macdonald Polynomials and Multivariable Basic Hypergeometric Series”, SIGMA, 3 (2007), 056, 30 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma182 https://www.mathnet.ru/rus/sigma/v3/p56
|
Статистика просмотров: |
Страница аннотации: | 165 | PDF полного текста: | 44 | Список литературы: | 35 |
|