Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2022, том 18, 020, 38 стр.
DOI: https://doi.org/10.3842/SIGMA.2022.020
(Mi sigma1814)
 

A Note on Multi-Oriented Graph Complexes and Deformation Quantization of Lie Bialgebroids

Kevin Morand

Sogang University, Seoul 04107, South Korea
Список литературы:
Аннотация: Universal solutions to deformation quantization problems can be conveniently classified by the cohomology of suitable graph complexes. In particular, the deformation quantizations of (finite-dimensional) Poisson manifolds and Lie bialgebras are characterised by an action of the Grothendieck–Teichmüller group via one-colored directed and oriented graphs, respectively. In this note, we study the action of multi-oriented graph complexes on Lie bialgebroids and their “quasi” generalisations. Using results due to T. Willwacher and M. Živković on the cohomology of (multi)-oriented graphs, we show that the action of the Grothendieck–Teichmüller group on Lie bialgebras and quasi-Lie bialgebras can be generalised to quasi-Lie bialgebroids via graphs with two colors, one of them being oriented. However, this action generically fails to preserve the subspace of Lie bialgebroids. By resorting to graphs with two oriented colors, we instead show the existence of an obstruction to the quantization of a generic Lie bialgebroid in the guise of a new $\mathsf{Lie}_\infty$-algebra structure non-trivially deforming the “big bracket” for Lie bialgebroids. This exotic $\mathsf{Lie}_\infty$-structure can be interpreted as the equivalent in $d=3$ of the Kontsevich–Shoikhet obstruction to the quantization of infinite-dimensional Poisson manifolds (in $d=2$). We discuss the implications of these results with respect to a conjecture due to P. Xu regarding the existence of a quantization map for Lie bialgebroids.
Ключевые слова: deformation quantization, Kontsevich's graphs, Lie bialgebroids, Grothendieck–Teichmüller group.
Финансовая поддержка Номер гранта
Ministry of Science and ICT, Korea 2018H1D3A1A01030137
National Research Foundation of Korea NRF-2020R1A6A1A03047877
This work was supported by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2018H1D3A1A01030137) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A6A1A03047877).
Поступила: 7 июля 2021 г.; в окончательном варианте 9 марта 2022 г.; опубликована 20 марта 2022 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 53D55, 18G85, 17B62
Язык публикации: английский
Образец цитирования: Kevin Morand, “A Note on Multi-Oriented Graph Complexes and Deformation Quantization of Lie Bialgebroids”, SIGMA, 18 (2022), 020, 38 pp.
Цитирование в формате AMSBIB
\RBibitem{Mor22}
\by Kevin~Morand
\paper A Note on Multi-Oriented Graph Complexes and Deformation Quantization of Lie Bialgebroids
\jour SIGMA
\yr 2022
\vol 18
\papernumber 020
\totalpages 38
\mathnet{http://mi.mathnet.ru/sigma1814}
\crossref{https://doi.org/10.3842/SIGMA.2022.020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4395777}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000773367200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130829414}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1814
  • https://www.mathnet.ru/rus/sigma/v18/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:65
    PDF полного текста:16
    Список литературы:16
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024